
Schema Redescription in Cellular Automata:
Revisiting Emergence in Complex Systems

Manuel Marques-Pita
School of Informatics and Computing

Indiana University (USA) and
Instituto Gulbenkian de Ciência (Portugal)

Email: marquesm@indiana.edu

Luis M. Rocha
School of Informatics and Computing

Indiana University (USA) and
Instituto Gulbenkian de Ciência (Portugal)

Email: rocha@indiana.edu

Abstract—We present a method to eliminate redundancy in
the transition tables of Boolean automata: schema redescription
with two symbols. One symbol is used to capture redundancy of
individual input variables, and another to capture permutability
in sets of input variables: fully characterizing the canalization
present in Boolean functions. Two-symbol schemata explain
aspects of the behaviour of automata networks that the char-
acterization of their emergent patterns does not capture. We use
our method to compare two well-known cellular automata rules
for the density classification task [1]: GKL [2], [3] and GP [4].
We show that despite having very different emergent behaviour,
these rules are very similar. Indeed, GKL is a special case of GP.
Therefore, we demonstrate that it is more feasible to compare
cellular automata via schema redescriptions of their rules, than
by looking at their emergent behaviour, leading us to question
the tendency in complexity research to pay much more attention
to emergent patterns than to local (micro-level) interactions.

I. INTRODUCTION

The intersection of biology and computer science has been
fertile for some time. Indeed, von Neumann was a member
of the mid-twentieth century Cybernetics group [5], whose
main focus was the understanding of natural and artificial
systems in terms of communication and control. Most early
computer science developments were inspired by the models
of cognition that orbited this group [6]. Since then, the need
to understand how biological systems are able to control
and transmit information throughout the huge number of
components that comprise them has only increased. The study
of complex network dynamics has received much attention in
the last two decades. From pioneering work on networks of
automata [7]–[9] to recent models of genetic regulation [10]–
[13], it is clear that to understand and control the biological
organization, it is useful to study models based on complex
networks of automata [14]–[16].

There has been much progress in understanding the structure
of natural networks—at the level of their topology [17], [18]
or of their more fine-grained motifs [19]—as well as on
modelling biological systems as networks of automata. Yet,
we are still to fully grasp how complex networks “compute”
and how to harness them to perform specific tasks [20]. The
need for a better understanding of collective computation in
complex networks has been identified in many areas. For
instance, the way plants adjust stomatal apertures for efficient
gas exchanges on leaf surfaces is statistically indistinguishable

from the dynamics of automata that compute [21], and the
high degree of connectivity in biochemical intracellular signal
transduction networks endows them with the capability of
emergent nontrivial classification—via collective computation
[22]. However, not much work in automata models of complex
networks has focused on how interactions at the local level of
components are linked to collective behaviour.

We show that eliminating redundancy in the transition tables
of local automata reveals the loci of control of collective
dynamics, better than via the characterization of collective
behaviour, emergent patterns, and the like. Our mechanism
to eliminate redundancy is schema redescription [23], [24],
which we expand here with an additional symbol as explained
below. Schemata remove redundancy from automata transition
tables, leaving only input states, or groups of input states that
control state-transitions, known as their canalizing inputs [25].
Moreover, we discuss how schema redescription can reveal
the links between local and collective behaviour in automata
networks (here cellular automata). We exemplify our approach
with the classical problem of collective computation in cellular
automata: the density classification task [1].

II. CELLULAR AUTOMATA

A κ-state automaton is an integer variable x ∈ {0, ..., κ−1},
whose value (or state) is computed at time t + 1 via a state-
determined transition function F , which takes as input the state
of a set of n automata at time t. When x = 0 we refer to it as
being in the quiescent state; any other state is regarded as an
active state. To study the dynamics of systems of many simple
elements (known as complex systems), it is common to study
networks of interconnected automata. One way to do this is
to arrange automata in a regular lattice of N cells, which we
refer to as cellular automata, a formalization of a complex
dynamical system with its origins in the work of Ulam and
von Neumann [26]. In a homogeneous cellular automaton
(CA), which we use here, each cell is defined by the same
κ-state automaton and is connected to n neighbour cells in the
lattice (including itself). Therefore, there are κn possible local
neighbourhood configurations (LNCs). The transition function
for every cell, F = {fj}, can thus be defined as a look-up table
(LUT) where each entry, fj , j ∈ {1, ..., κn}, is an assignment
of a possible input LNC, or condition part, to an output state

978-1-61284-061-1/11/$26.00 ©2011 IEEE 233

xi(t+1) ∈ {0, ..., κ−1}. In binary CAs (κ = 2) it is possible
to classify individual cell state transitions in three categories:
(1) preservations, where a cell does not change its state in
the next time step, i.e. xi(t) = xi(t + 1); (2) generations, in
which the cell goes from the quiescent to the active state; and
(3) annihilations, where the cell goes from the active to the
quiescent state. The initial configuration (IC) of states of a
CA lattice is typically random. In the CAs we consider here,
cells in the lattice update their states synchronously.

III. SCHEMA REDESCRIPTION

We previously proposed schema redescription with one
symbol as a method to relate an automaton’s LUT to the col-
lective dynamics it produces in one- and two-dimensional CA
lattices [23], [24]. Here we introduce two-symbol schemata.
The basic idea is simple: LUTs are compressed into par-
simonious schemata with two extra symbols that capture
redundant input states. One symbol captures the irrelevance
of some inputs in some situations; the other the permutability
of subsets of inputs. Only the input states that effectively
determine the automaton’s state transitions remain. A related
notion of canalizing inputs exists in the context of modelling
biochemical networks, e.g. those that regulate the expression
patterns of genes. Indeed, automata with canalizing inputs have
been shown to stabilize the dynamics of Boolean models of
genetic regulation [13], [25], [27].

A. Wildcard Schemata

To unpack the notion of schema, consider a Boolean au-
tomaton x, whose state-transition function depends on the
states of six Boolean inputs (possibly other automata). Figure
1A depicts the subset of LUT entries (fα) for automaton x,
that lead to state-transition x(t+ 1) = 1.

We first compress LUT entries using schemata that are like
LUT entries, but allow an additional wildcard (#) symbol
(represented graphically in grey) to appear in their condition
part. A wildcard input means that any valid state is accepted
for it, with no effect on the state-transition. This results in a
redescription of the set of LUT entries, F , for an automaton x
of n inputs into a smaller set of wildcard schemata, F ′ ≡ {f ′υ}
(see Figure 1B). The set F ′, for a given automaton also
contains the original entries in its LUT, F , that could not
be redescribed by wildcard schema. Each specific wildcard
schema f ′υ redescribes a subset of entries in the original LUT,
denoted by Υυ ≡ {fα : fα � f ′υ} (� means “is redescribed
by”). Wildcard schemata are minimal in the sense that none
of the (non-wildcard) inputs in the condition part of a schema
can be “raised” to the wildcard status and still ensure the
automaton’s transition to the same state. Because wildcard
schemata are minimal, it follows that for any two wildcard-
schemata f ′υ and f ′φ, Υυ * Υφ∧Υφ * Υυ . Because wildcard
schemata are minimal and unique, they are equivalent to the
set of prime implicants obtained during the first step of the
Quine & McCluskey Boolean minimization algorithm [29].
In other words, a schema is unique in the sense that the
subset of LUT entries it redescribes is not fully redescribed

by any other schema. However, in general Υυ ∩ Υφ 6= ∅.
This means that schemata can overlap in terms of the LUT
entries they describe. In Figure 1, Υ1 ≡ {f1, f5, f9, f13} and
Υ9 ≡ {f4, f5, f6, f7}, therefore Υ1 ∩Υ9 ≡ {f5}.

Our redescription methodology derives from the work of
John Holland on condition/action rules to model inductive
reasoning in cognitive systems [28]. However, the same idea
had been developed previously for the minimization of circuits
in electrical engineering [29]. It was also used by Valiant
[30] when introducing Probably Approximately Correct (PAC)
learning.

f'1:1 :

f'1:2 :

f'1:3 :

f'1:4 :

f'1:5 :

f'1:6 :

f'1:7 :

f'1:8 :

f'1:9 :

f'1:10 :

f'1:11 :

f'1:12 :

:

:

:

:

:

:

:

:

:

:

:

:

:

:

f''1:1 :

Wildcard & Position Free
Schemata

Look-Up Table Wildcard Schemata

#

##

##

##

##

##

#

#

#

#

#

#

#

0 0 1 0 10

0 0 1 0 01

1

1

1

1

0 0 1 0 11

0 0 1 1 00

0 0 1 1 10

0 0 1 1 01

1 0 1 0 00

1 0 1 0 10

1 0 1 0 01

1 0 1 0 11

1 0 1 1 00

1 0 1 1 10

1 0 1 1 01

1

1

1

1

1

1

1

1

1

0 1 10

0 1 01

0 1 0 1

0 1 0 1

0 1 1 0

0 1 1 0

0 0 1 1

0 0 1 1

0 0 1 1

1 0 1 0

1 0 1 0

1 0 1 0

1

1

1

1

1

1

1

1

1

1

1

1

100 1 1

0 0 1 1 11

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f ′
1

f ′
2

f ′
3

f ′
4

f ′
5

f ′
6

f ′
7

f ′
8

f ′
9

f ′
10

f ′
11

f ′
12

f ′′
1

A B

C

F Υ9

F ′

F ′′

Θ1

1

Fig. 1. A set of LUT entries with transition to 1, redescribed. White (black)
states are 0 (1). Wildcards are grey. Notice that Υ9 ≡ {f4, f5, f6, f7}.
Using the additional position-free symbol, the entire set F ′ is compressed
into a single two-symbol schema: f ′′1 . Any permutation of the inputs with the
position-free symbol results in a schema in F ′. Since there is only one set of
marked inputs, the position-free symbol does not require an index.

A wildcard schema can always be expressed as a logical
conjunction of literals (logical variables or their negation).
Since such a schema is a prime implicant, it follows that
all of its literals are essential to determine the automaton’s
state transition. We refer to the literals (input states) in a
wildcard schema as its essential input states or enputs for
short. For instance, schema f ′9 of the example of figure 1 has
4 enputs: the first 4 cells in its condition part. The set F ′ can
be expressed as a logical disjunctive normal form (DNF)—that
is, a disjunction of conjunctions.

B. Two-Symbol Schemata

Here we introduce a further redescription of F ′ that results
in a set of two-symbol schemata F ′′ ≡ {f ′′θ } (Figure 1C).
The position-free symbol (◦m) above inputs in a condition
part means that any pair of inputs thus marked can “switch
places” without affecting the automaton’s state-transition.
The index of the position-free symbol, when necessary, is
used to differentiate among distinct subsets of inputs whose

234

elements can only switch places with each other. A two-
symbol schema f ′′θ redescribes a set Θθ ≡ {fα : fα � f ′′θ }
of LUT entries of x. In the same way a wildcard schema
captures a subset Υυ of LUT entries, a two-symbol schema
redescribes a subset of wildcard schemata 1. Therefore f ′′θ
captures the degree of symmetry or group invariance in the
set of wildcard schemata contained in Θ′

θ [31]. We refer to
the subsets of such marked inputs in a two-symbol schema as
group-invariant enputs, which may include wildcard symbols
marked with the position-free symbol. Since each two-symbol
schema compresses a number of wildcard schemata, it follows
that for a given automaton x, |F ′′| ≤ |F ′| ≤ |F | = 2k.

After redescription, all redundancy is removed in the form
of the two symbols. In a given schema, a wildcard input alone
is not essential by definition: it is never an enput, while an
individual input set up to a Boolean state always is. However,
when a wildcard input is marked with a position-free symbol,
then it is part of a group-invariant enput defined by the set of
inputs thus marked. In this case, the enput identifies a group
invariance property, such as “as long as two of these inputs
are false”. To summarize, the set of wildcard schemata F ′

of an automaton x captures its enputs, while the addition of
the position-free symbol captures group invariant relationships
in subsets of wildcard schemata. In our working example,
the resulting two-symbol schema (Figure 1) reveals that the
automaton’s transition to true is determined only by a subset
of its six inputs: as long as inputs 2 and 3 are false and true,
respectively, and among the others at least one is true and
another is false, the automaton will transition to true. Note
that such minimal input constraints are not obvious by looking
at the LUT of the example automaton.

In previous work, we used wildcard schemata to identify
conceptual properties of known solutions to a well-studied
problem that requires non-trivial collective computation: the
density classification task in homogeneous cellular automata.
By uncovering these properties, we were able to devise a
genetic algorithm that operated on a search space of wildcard
schemata, rather than the space of LUTs. We found that
the space of schemata is much more amenable to search,
with very good correlations among good solutions to the
problem. This way, we found some of the best solutions to
this problem [23], [24]. Our aims here are: (1) introduce two-
symbol schemata; (2) demonstrate that they are more useful
to explain and control the function and behaviour of CAs than
existing techniques to analyse collective behaviour, and (3)
it is more feasible to compare automata transition functions
via their schemata redescriptions, than by looking at their
emergent or collective behaviour.

1Given a two-symbol schema, f ′′θ , the wildcard schemata it redescribes
can be denoted by the set Θ′

θ . It is useful to look at set Θ′
θ as a matrix

where rows correspond to wildcard schemata, and columns to their inputs.
The last column is the state transition of f ′′θ , and may therefore be omitted.
The wildcard-schemata rows of matrix Θ′

θ have the same number of zeroes,
ones and wildcards. For any pair of inputs (i, j) in f ′′θ that are marked with
the same position-free symbol, the corresponding ith and jth columns of Θ′

θ
can be switched, and the rows of the resulting matrix reordered to obtain Θ′

θ
again.

IV. THE DENSITY CLASSIFICATION TASK (DCT)

The density classification task (DCT) is the most studied
example of collective computation in CAs. The goal is to find
a binary CA that can classify the majority state in a random
IC. If the majority of cells in the IC is in the quiescent (active)
state, after a number of time steps the lattice should converge
to a homogeneous state where every cell is in the quiescent
(active) state. Since the outcome could be undecidable in
lattices with even number of cells (N), lattices with an odd
number of cells are used instead. Devising CA rules that
perform this task is not trivial, because cells in a CA lattice
update their states based on local neighbourhood information,
the states of 7 input Boolean variables in this case. Therefore,
this task requires information to be transferred across time
and (lattice) space to achieve a correct global classification.
The performance of CA rule F , on C initial configurations of
length N is denoted by PCN (F). The definition of the DCT
used in our studies comes from [32].

V. EXPLANATION IN COMPLEX SYSTEMS

The complex systems community has produced method-
ologies to characterize space-time dynamics in CAs to study
emergent behaviour, often using the DCT as a test-case [20].
The most well-known such methodology is the computational
mechanics framework (CM) [33], [34], used to extract regular
domains: repeating patterns in the space-time dynamics, for-
mally defined as sets of regular languages. It has been argued
that in order to explain emergent behaviour, we should look at
the boundaries between domains, known as particles, as this is
where information is exchanged in the CA lattice [35]. There-
fore, collective behaviour in CA dynamics is characterized by
finite catalogues of particles and their interaction rules, which
define the emergent computation implemented by a given CA
[20], and can be seen to possess some features of linguistic
representation, though not in fully symbolic forms [36]. Figure
2 depicts the catalogue of particles for the FGKL rule [2], [3],
which we describe below.

Other methods exist to detect regularities in CA space-
time dynamics, typically statistical and information theoretical
filters that uncover patterns that correspond to the particles
found via CM [37], [38]. But when it comes to understanding
and controlling collective behaviour, a key issue is concerned
with finding the best explanatory device to use. Do we focus
exclusively on the emergent patterns of collective dynamics
(the “emergentist” paradigm), as CM and related methodolo-
gies do? Or can we gain explanatory advantages by paying
more attention to the lower level of local transition functions?

In the remaining of this article we pursue the second
approach, towards a hierarchical methodology that seeks
to link local interactions to global behaviour, ultimately
allowing us to better understand and control the collective
dynamics of complex systems modelled as automata networks.

235

Regular Domains

Λ0 = 0∗ Λ1 = 1∗ Λ2 = (01)∗

Particles (Velocities)

Particle Interactions

decay

react

particle
annihilation

β ∼ Λ2Λ0(1)α ∼ Λ0Λ1(0)

γ ∼ Λ0Λ2(3) δ ∼ Λ1Λ2(−1)

η ∼ Λ2Λ1(−3) µ ∼ Λ1Λ0(0)

γ + β → Ø1

δ + η → Ø2

α + δ → γ

β + α → η

γ + η → α

µ → δ + β

Fig. 2. Catalogue of regular domains, particles (domain boundaries), particle
velocities (in parentheses), and particle interactions seen in FGKL ’s space-
time behaviour. The colouring assigned to each particle is then used in Figure
3. The notation p ∼ ΛxΛy means that p is the particle forming the boundary
between regular domains Λx and Λy . (Adapted from [1].)

VI. COMPARING COLLECTIVE DYNAMICS

Most of the known one-dimensional CA rules for the DCT
were analysed using wildcard schemata in [39]. We found
that most of these CAs are process symmetric: they classify
equally well ICs with majority 0s and with majority 1s. We
also found that two of the most well-known high-performing
CA rules for the DCT, while observing very distinct collective
behaviour, are nonetheless similar at the local LUT level [39].
More specifically, we refer to the human-derived CA FGKL [2],
[3], and FGP, derived via genetic programming [4]. Figures
3 and 4 depict the space-time dynamics of FGKL and FGP,
respectively. The performance of these rules on the DCT is:
P105

149 (FGKL) ≈ 0.815, and FGP P105

149 (FGP) ≈ 0.822. In the
remainder of this article, instead of FGKL we use the fully
equivalent FGKL′ , which is the mirror rule of FGKL. That is,
exactly the same CA rule, but where the particles traverse the
lattice in the opposite direction, with the same velocities and
interactions (see computationally equivalent CAs in [39]).

The collective behaviour of FGKL′ and FGP is quite distinct;
while FGKL′ , after a short transient, leads to the appearance of
three domains, the dynamics of the FGP leads to the appearance
of many more (we have identified at least ten [36], see figure
4). Because FGKL′ only has three domains, from the CM
perspective, its collective dynamics can be characterized and
explained with a catalogue of six particles: the permutations
without repetition of two out of three possible domains, where
order is relevant2. Indeed, the collective behaviour of FGKL
has been well predicted by the CM framework, using only
six particles [40], [41]. In contrast, FGP produces many more
particles; even with just ten domains (it has more), there would
be ninety possible particles and many potential interactions.
Interestingly, even though the collective dynamics of the
two rules is apparently (via the CM framework) completely
different, we found that FGP can be easily derived from FGKL,
via a small sequence of operations on the wildcard schemata
representation of the latter.

The wildcard schemata for FGKL′ are shown in Figure 5.
Note that most schemata are state-preserving: all state-changes
in this automaton are described by two wildcard schemata
(f ′5 and f ′10). Generations (annihilations) occur only when a

2p = d!/(d− 2)!, where d is the the number of domains.

1 50 100 149
1

50

100

150

cells

tim
e

1 50 100 149
1

50

100

150

cells

tim
e

α
β

γ

η

δ

µ

Fig. 3. (Top) A space-time diagram produced by FGKL . (Bottom) The
diagram with the regular domains filtered out, leaving only the locations of
the particles (coloured using the scheme in Figure 2). Note that particle α
(red) lasts for only one time step, after which it decays to particles δ and β.

cell in state 0 (1) observes right (left) and right-most (left-
most) neighbours in the opposite state—this is characterized
by schemata f ′5 and f ′10. In all other situations the a cell xi(t+
1) = xi(t).

The wildcard schemata for FGP are shown in Figure 6. In
this case, all state changes are characterized by three wildcard
schemata: f ′1, f ′3, and f ′5 for annihilation, and f ′6, f ′8, and f ′10
for generation. In all other situations the a cell xi(t + 1) =
xi(t). Using the two-symbol schemata introduced here, we can
appreciate better the similarity between the two rules. Figure
7 depicts the essential state-changing transitions in both rules,
which we obtained by via two-symbol schema-redescription,
thus removing all redundancy from local dynamics. We can

236

1 50 100 149
1

50

100

150

cells

tim
e

Fig. 4. A space-time diagram produced by FGP .

f ′
1

f ′
2

f ′
3

f ′
4

f ′
5

f ′
6

f ′
7

f ′
8

f ′
9

f ′
10

Fig. 5. Wildcard schemata of FGKL′ . Schemata f ′5 and f ′10 describe all the
possible state-changes for a cell; all other situations are preservations. Notice
that schemata f ′2, f

′
4, f

′
7 or f ′9, when applicable to a state-change, describe

LUT entries already described by f ′5 or f ′10, respectively; When prescribing
preservations the same schemata are captured with less enputs by f ′1, f3, f

′
6

or f ′8. This means that f ′2, f
′
4, f

′
7 or f ′9 are not essential schemata.

now, for the first time, understand that FGP is doing something
very similar to, and which includes the behaviour of, FGKL′ at
local level.

Both CA rules can be understood by a single schema for
generation and their process-symmetric schema for annihi-
lation. Each such schemata is characterized by two enputs.
Moreover, one of the enputs is exactly the same for both
CAs: for the generation schema, both CAs depend on the
right-most neighbour being 1, and for annihilation schemata,
both CAs depend on the left-most neighbour being 0. The
second (group-invariant) enput in FGP is also very similar
to, and indeed contains the second enput for, FGKL′ . For
the generation schema, FGKL′ depends on the immediate-right
neighbour being 1, and for the annihilation schema, FGKL′

f ′
1

f ′
2

f ′
3

f ′
4

f ′
5

f ′
6

f ′
7

f ′
8

f ′
9

f ′
10

Fig. 6. Wildcard schemata for FGP. f ′1, f ′3, f ′5, f ′6, f ′8, and f ′10 describe all
the possible state-changes for a cell xi; all other situations are preservations.
Notice that schemata f ′4 and f ′9, when applicable to a state-change, describe
LUT entries already described by f ′3 or f ′5 and f ′8 or f ′10, respectively

depends on the immediate-left neighbour being 0. When it
comes to FGP, the second enput is a group-invariant enput:
one of three possible input cells in the neighbourhood may
be specified (set to 0 or 1). Specifically, For the generation
schema, FGP depends not only on the right-most neighbour
being 1, like FGKL′ , but alternatively, on the immediate-left,
immediate-right or left-most neighbours being 1. Likewise, for
the annihilation schema, FGP depends not only on the left-most
neighbour being 0, like FGKL′ , alternatively, on the immediate-
left, immediate-right or right-most neighbours being 0.

Generation Annihilation

FGKL

FGKL′

FGP′

Fig. 7. Two-symbol schemata for FGKL′ (FGKL) and FGP, characterizing
every possible situation where there are state changes for these rules. Note
that here we include the state of the updating cell, (even if not an enput in
the original schemata) to describe the known state-changing transitions.

VII. CONNECTING THE LEVELS

The similarity between the local-level descriptions of FGKL′

and FGP we discovered, as well as their similar performance
leads to a natural question: do the additional regular domains
produced by the FGP, play a significant role in its collective
computation of the DCT? The following three facts are known:
(1) FGP produces the same three regular domains as FGKL′ ,
plus many others; (2) the performance difference between
the two rules, while significant, is less than 1%; and (3) the
number of possible particles grows very rapidly with number
d of domains (d!/(d− 2)!). Therefore, it is reasonable to con-
clude that many—even perhaps most of the regular domains—
produced by FGP must be redundant; i.e. the particles they
produce lead to interactions that have no effect on information
transmission across the lattice.

Support for this conclusion comes from different sources.
One is simple inspection of the space-time dynamics pro-

237

duced by FGP. Figure 8 depicts a portion of the space-time
dynamics for FGP shown in Figure 4. Notice, for example,
the collision between the particle formed by domains Λ5 and
Λ3 (highlighted in green), and the particle formed by domains
Λ5 and Λ6 (orange). This collision, in the CM framework
perspective, leads to two new particles: one formed by domains
Λ6 and Λ4, and another formed by domains Λ3 and Λ4.
However, this collision seems to be redundant, leading to
particles that behave exactly as the colliding particles (same
velocity, possibly same structure). This is highlighted in Figure
8 by using the same colours for the particles observed before
and after the collision. This suggests that the (large) set of
possible regular domains in the dynamics of FGP contains sets
of domains that are equivalent, such that collisions among the
particles they produce are redundant. In the example above Λ5

and Λ6 seem to be equivalent, just like Λ3 and Λ4.

1 50 100 149
1

50

100

150

cells

tim
e

Λ2

Λ1

Λ3

Λ4

Λ5

Λ6

Fig. 8. In FGP there are particles that produce equal particles after collisions
(Highlighted in green (vertical) and orange/purple (inclined)

Our observation is supported further when looking at the
schemata for FGP. We can use the knowledge encoded in
schemata, to better understand the collective behaviour of the
CA. Consider f ′1 in FGP, which enforces that a cell xi in
any state whose left- and right-most neighbours are 0 will
transition to, or stay 0 at t+1 (see Figure 7). This leaves a wide
“gap” of five cells in-between the 0-cells, which can be in any
state, without affecting the state-transition of xi to 0. When
this pattern is repeated in the lattice, i.e. every 6th cell is 0,
using the two-symbol schemata obtained instead of the original
LUT, we can compute the resulting collective dynamics with
incomplete information. Indeed, one key advantage of schema
redescription is that it allows the simulation of the dynamics
of automata networks from ICs where only the state of some
cells is specified, while the state of the others is unknown.

Figure 9 (A) depicts the known dynamics given partial
lattice information, where every sixth cell is 0 (except at the
lattice borders) and the state of grey cells is unknown. This
allows us to know how the initial input pattern will propagate
in the CA dynamics. In this case, our lack of knowledge
propagates in the lattice, and our partial knowledge of the
dynamics eventually disappears completely. In 9 (B) we show
that different such patterns can co-exist independently, in the
previous unknown segments of the lattice. The difference from
(A) is that every third cell in the left half of the initial lattice
is set to 1, and the third and every third cell after that is set to
0, in the right half of the initial lattice (these conditions match

A

B

1 20 40 67
1

5

10

14

cells

tim
e

1 20 40 67
1

5

10

14

cells

tim
e

f ′
1 f ′

1

f ′
1

f ′
7 f ′

7 f ′
2 f ′

2

Fig. 9. Dynamically decoupled dynamics of patterns in FGP. See text for
description.

schemata f ′7 and f ′2 respectively).
One very interesting observation from computing dynamics

with incomplete information, is that many patterns (such as
those in Figure 9) are dynamically decoupled in FGP. This
means that the space-time patterns produced from schemata
f ′1, f

′
2 and f ′7 in FGP are updated independently: they function

as building blocks that can switch places, producing different
domains (from the CM perspective) that in reality are formed
of some of the same sub-patterns (defined by the same
schemata). This is clear in Figure 9 (B) where the patterns
from schemata f ′1, f

′
2 and f ′7, coexist independently of one

another. Since some of the schemata for FGP have large “gaps”
wherein the states of the cells are irrelevant, if particles collide
inside those gaps, some of the decoupled underlying patterns
are unaffected, leading to equivalent domains and redundant
collisions such as what we apparently observe in Figure 8.

In contrast, rule FGKL′ does not easily lead to dynamic
decoupled patterns and redundant collisions, since its schemata
do not leave large enough “gaps” in the lattice for other pat-
terns to occur. Therefore, FGKL′ presents much fewer domains
than rule FGP. But since the domains obtained by rule FGP
are the result of schemata with a large amount of canalization
leading to large “gaps” that can be in any state, many of the
obtained distinct domains are dynamically equivalent.

This observation is also supported by the schema re-
description of additional, better-performing rules for the
DCT: FMM0802 [23] and FWO [42], with performances
P105

149 (FMM0802) ≈ 0.845 and P105

149 (FWO) ≈ 0.889. The two-
symbol (state-changing) schemata for these rules are depicted
in Figure 10. As we can see, for the DCT, increasingly better-
performing rules become “less canalized”. This means that
they are very sensitive to noise in ICs (as we would expect
for the DCT): bit-flips or incomplete state-specification have a
high chance of leading to wrong classification (in DCT terms).
Since noise is not used in their performance computation and
fitness evaluations, these rules find advantages in becoming
increasingly specific to the initial conditions they respond dif-
ferently to. Therefore, they have a higher number of schemata
with more enputs and therefore less canalization to describe

238

their behaviour. The dynamics of these CAs do not produce
the large numbers of domains as observed in FGP. 3

F
M

M
0
8
0
2

F
W

O

Generation Annihilation

Fig. 10. 2-symbol schemata of FMM0802 and FWO, characterizing every
possible situation where there are state changes for this rule.

VIII. DISCUSSION

Two-symbol schema redescription allowed us for the first
time to understand that despite dramatically distinct collective
dynamics (emergent behaviour), the FGP rule is a more general
version of the FGKL′ rule. The statistically significant, albeit
small, performance improvement of FGP over FGKL′ , is gained
by converting a single enput, into a group-invariant enput.
In other words, FGP introduced ambiguity to the dynamical
behaviour [43] of FGKL′ , by allowing the state-transition to
optionally occur for a larger set of configurations of a cell’s
neighbourhood. This redundancy in the form of ambiguity
is quite effectively captured by our two-symbol schema re-
description with the position-free symbol.

It should be emphasized that until this point, and especially
when looking only at the emergent behaviour of these rules,
their deep similarity was unknown. With schema redescription
of local-level dynamics, not only can we uncover the similar-
ity, but we can explain it. It also makes sense that FGP was
obtained via genetic programming [4]. This rule was probably
evolved via minor changes to a tree encoding of FGKL; it would
need simply to substitute a tree terminal for a sub-tree with a

3redescriptions and dynamics of all the CAs in this paper are available from
http://cnets.indiana.edu/groups/casci/mrecinca/ca

disjunction node for 3 terminal edges, plus a mirror operation
to go from FGKL to FGKL′ .

We can also see that both rules are extremely canalized:
every possible state-change is controlled by two enputs, dis-
regarding the states of all other neighbouring cells. But the
FGP is canalizing in yet another way: it depends, alternatively,
on the state of one of the input cells in a group-invariant
enput. These group-invariant (collective) enputs can be for-
mally described as a disjunction of alternative input variables
(logical literals) and captured in schemata redescription by
the additional position-free symbol. This additional form of
canalization in Boolean functions, and its effect on determin-
ing collective dynamics in automata networks used to model
genetic regulation and signalling networks is a topic we will
explore further, elsewhere.

Another key idea we will explore in future work is how
to use the explanatory power of schema redescription at the
local level of Boolean LUTs, to link local to global behaviour
in automata networks. From what we presented here, we can
already see that the FGP rule must necessarily lead to some
equivalent domains and redundant particle interactions. Since
it contains group-invariant enputs, it canalizes distinct and
alternative neighbourhood input patterns to the same transition.
Therefore, domains that seem to be distinct at the collective
space-time behaviour level, can in reality be equivalent and
not involved in transmitting novel information through the
lattice, merely maintaining the same information in different-
looking domains. In a forthcoming paper we will build up from
schema redescription at the local level, and the computation
of collective dynamics from incomplete information, to auto-
matically identify domains (relevant and redundant), particles,
and particle interactions at the collective dynamics level. As
a final topic of discussion, the present work moves us to
consider that an exclusively emergentist approach to complex
systems dynamics is incomplete. The induction of recurring
patterns in dynamics is not a substitute for uncovering the
lower-level mechanisms that actually dictate the dynamics. A
full account of complex systems requires attention to local and
global dynamics. In a sense, too much attention to the “spots”
or “stripes” we observe at the emergent level of behaviour,
can mask that underneath it all there may be a very similar
animal.

ACKNOWLEDGMENTS

This work was supported by Fundação para a Ciência e a
Tecnologia (Portugal) grant 36312/2007. We thank the FLAD
Computational Biology Collaboratorium at the Gulbenkian
Institute (Portugal) for hosting and providing facilities used for
this research. We also thank Indiana University for providing
access to its computing facilities.

239

REFERENCES

[1] M. Mitchell, J. Crutchfield, and R. Das, “Evolving cellular automata
with genetic algorithms: A review of recent work,” in Proceedings of
the First International Conference on Evolutionary Computation and its
Applications (EvCA’96). Russian Academy of Sciences, 1996.

[2] P. Gacs, L. Kurdyumov, and L. Levin, “One-dimensional uniform arrays
that wash out finite islands,” Probl. Peredachi. Inform., vol. 14, pp. 92–
98, 1978.

[3] P. Gonzaga de Sá and C. Maes, “Gacs-kurdyumov-levin automaton
revisited,” Journal of Statistical Physics, vol. 67, no. 3-4, pp. 507–522,
1992.

[4] D. Andre, F. B. III, and J. Koza, “Discovery by genetic programming of a
cellular automata rule that is better than any known rule for the majority
classification problem,” in Proceedings of the First Annual Conference
on Genetic Programming, J. Koza, D. Goldberg, and D. Fogel, Eds.
MIT Press, 1996, pp. 3–11.

[5] S. J. Heims, The Cybernetics Group. MIT Press, 1991.
[6] W. McCulloch and W. Pitts, “A logical calculus of ideas immanent in

nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115–
133, 1943.

[7] S. Kauffman, “Metabolic stability end epigenesis in randomly con-
structed genetic nets.” Journal of Theoretical Biology, vol. 22, pp. 437–
467, 1969.

[8] B. Derrida and D. Stauffer, “Phase transitions in two-dimensional
kauffmann cellular automata,” Europhys. Lett., vol. 2, pp. 739–745,
1986.

[9] S. Kauffmann, The Origins of Order: Self-Organization and Selection
in Evolution. Oxford University Press, 1993.

[10] L. Mendoza and E. R. Alvarez-Buylla, “Dynamics of the genetic
regulatory network for arabidopsis thaliana flower morphogenesis.” J
Theor Biol, vol. 193, no. 2, pp. 307–319, Jul 1998. [Online]. Available:
http://dx.doi.org/10.1006/jtbi.1998.0701

[11] R. Albert and H. Othmer, “The topology of the regulatory interac-
tions predicts the expression pattern of the segment polarity genes in
drosophila melanogaster.” J Theor Biol, vol. 223, no. 1, pp. 1–18, Jul
2003.

[12] C. Espinosa-Soto, P. Padilla-Longoria, and E. R. Alvarez-Buylla,
“A gene regulatory network model for cell-fate determination
during arabidopsis thaliana flower development that is robust
and recovers experimental gene expression profiles.” Plant Cell,
vol. 16, no. 11, pp. 2923–2939, Nov 2004. [Online]. Available:
http://dx.doi.org/10.1105/tpc.104.021725

[13] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein, “Random
boolean network models and the yeast transcriptional network.” Proce,
vol. 100, no. 25, pp. 14 796–14 799, Dec 2003. [Online]. Available:
http://dx.doi.org/10.1073/pnas.2036429100

[14] M. Chaves, R. Albert, and E. D. Sontag, “Robustness and fragility
of boolean models for genetic regulatory networks.” J Theor Biol,
vol. 235, no. 3, pp. 431–449, Aug 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.jtbi.2005.01.023

[15] S. Bornholdt, “Systems biology: less is more in modeling
large genetic networks,” Science, Jan 2005. [Online]. Available:
http://stke.sciencemag.org/cgi/content/summary/sci;310/5747/449

[16] ——, “Boolean network models of cellular regulation: prospects and
limitations,” J R Soc Interface, vol. 5 Suppl 1, pp. S85–94, Aug 2008.

[17] A.-L. Barabási, Linked: The New Science of Networks. New York,
USA: Perseus Books, 2002.

[18] M. Newman, A.-L. Barabási, and D. J. Watts, The Structure and
Dynamics of Networks. Princeton, NJ: Princeton University Press, 2006.

[19] U. Alon, “Network motifs: theory and experimental approaches.” Nat
Rev Genet, vol. 8, no. 6, pp. 450–461, Jun 2007. [Online]. Available:
http://dx.doi.org/10.1038/nrg2102

[20] M. Mitchell, “Complex systems: Network thinking,” Artificial Intelli-
gence, vol. 170, no. 18, pp. 1194–1212, 2006.

[21] D. Peak, J. D. West, S. M. Messinger, and K. A. Mott, “Evidence for
complex, collective dynamics and distributed emergent computation in
plants,” Proceedings of the National Academy of Sciences, vol. 101,
no. 4, pp. 918–922, 2004.

[22] T. Helikar, J. Konvalina, J. Heidel, and J. A. Rogers, “Emergent
decision-making in biological signal transduction networks.” Proc Natl
Acad Sci U S A, vol. 105, no. 6, pp. 1913–1918, Feb 2008. [Online].
Available: http://dx.doi.org/10.1073/pnas.0705088105

[23] M. Marques-Pita, M. Mitchell, and L. M. Rocha, “The role of conceptual
structure in designing cellular automata to perform collective compu-
tation,” in Unconventional Computation. 7th International Conference.
LNCS 5204, C. Calude, J. F. Costa, R. Freund, M. Oswald, and
G. Rozenberg, Eds., vol. 5204, 2008, pp. 146–163.

[24] M. Marques-Pita and L. M. Rocha, “Conceptual structure in cellular
automata: The density classification task,” in Proceedings of the Eleventh
International Conference on Artificial Life (Alife XI), S. Bullock, J. No-
ble, R. A. Watson, and M. A. Bedau, Eds. MIT Press, Cambridge,
MA., 2008, pp. 390–397.

[25] C. J. O. Reichhardt and K. Bassler, “Canalization and symmetry in
boolean models for genetic regulatory networks,” Physica A, vol. 40,
pp. 4339–4350, 2007.

[26] J. von Neumann, Theory of Self-Reproducing Automata, ser. Edited and
completed by A. W. Burks. University of Illinois Press, 1966.

[27] J. Grefenstette, S. Kim, and S. Kauffman, “An analysis
of the class of gene regulatory functions implied by a
biochemical model,” BIOSYSTEMS, Jan 2006. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0303264705001681

[28] J. Holland, K. Holyoak, R. Nisbett, and P. Thagard, Induction: Processes
of Inference, Learning and Discovery. MIT Press, 1986.

[29] W. V. Quine, “A way to simplify truth functions,” The American
Mathematical Monthly, vol. 62, no. 9, pp. 627–631, 1955.

[30] L. Valiant, “A theory of the learnable,” Communi-
cations of the ACM, Jan 1984. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1968.1972

[31] E. McCluskey, “Detection of group invariance or total symmetry of a
boolean function,” Bell System Technical Journal, vol. 35, no. 6, pp.
1445–1453, 1956.

[32] M. Mitchell, J. Crutchfield, and P. Hraber, “Revisiting the edge of chaos:
Evolving cellular automata to perform computations,” Complex Systems,
vol. 7, pp. 89–130, 1993.

[33] J. Hanson, “Computational mechanics of cellular automata,” Ph.D.
dissertation, University of California, Berkeley, 1993.

[34] J. Crutchfield, “Is anything ever new? considering emergence,” in
Complexity: Metaphors, Models, and Reality,, ser. SFI Series in the
Sciences of Complexity, G. Cowan and D. Pines, Eds. Addison-Wesley,
1994, vol. XIX, pp. 479–497.

[35] J. P. Crutchfield, M. Mitchell, and R. Das, “The evolutionary de-
sign of collective computation in cellular automata,” in Evolutionary
Dynamics—Exploring the Interplay of Selection, Neutrality, Accident,
and Function, J. P. Crutchfield and P. K. Schuster, Eds. Oxford
University Press, New York, 2003, pp. 361–411.

[36] L. M. Rocha and W. Hordijk, “Material representations: From the
genetic code to the evolution of cellular automata,” Artificial Life,
vol. 11, no. 1-2, pp. 189 – 214, Winter/Spring 2005.

[37] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, “Local information
transfer as a spatiotemporal filter for complex systems,” Physical Review
E, vol. 77, p. 026110, 2008.

[38] C. Shalizi, R. Haslinger, J.-B. Rouquier, K. Klinkner, and C. Moore,
“Automatic filters for the detection of coherent structure in spatiotem-
poral systems,” Physical Review E, vol. 73, 2006.

[39] M. Marques-Pita, R. Manurung, and H. Pain, “Conceptual representa-
tions: What do they have to say about the density classification task
by cellular automata?” in ECCS’06, European Conference on Complex
Systems., J. Jost, F. Reed-Tsotchas, and P. Schuster, Eds., 2006.

[40] M. Mitchell, J. Crutchfield, and P. Hraber, “Evolving cellular automata
to perform computations:mechanisms and impediments,” Physica D,
vol. 75, pp. 361–391, 1994.

[41] W. Hordijk, J. P. Crutchfield, and M. Mitchell, “Mechanisms of emergent
computation in cellular automata,” in Proceedings of the Fifth Interna-
tional Conference on Parallel Problem Solving From Nature—PPSN V,
A. E. Eiben, Ed. New York: Springer, 1998.

[42] D. Wolz and P. B. de Oliveira, “Very effective evolutionary techniques
for searching cellular automata rule spaces,” Journal of Cellular Au-
tomata, vol. 3, pp. 289–312, 2008.

[43] G. Klir and M. Wierman, Uncertainty-Based Information : Elements
of Generalized Information Theory, ser. Studies in Fuzziness and Soft
Computing. Physica-Verlag, 1999.

240

